Luminescent Gold(III) Thiolates: Supramolecular Interactions Trigger and Control Switchable Photoemissions from Bimolecular Excited States

نویسندگان

  • Lucy Currie
  • Julio Fernandez-Cestau
  • Luca Rocchigiani
  • Benoît Bertrand
  • Simon J Lancaster
  • David L Hughes
  • Helen Duckworth
  • Saul T E Jones
  • Dan Credgington
  • Thomas J Penfold
  • Manfred Bochmann
چکیده

A new family of cyclometallated gold(III) thiolato complexes based on pyrazine-centred pincer ligands has been prepared, (C^Npz ^C)AuSR, where C^Npz ^C=2,6-bis(4-But C6 H4 )pyrazine dianion and R=Ph (1), C6 H4 tBu-4 (2), 2-pyridyl (3), 1-naphthyl (1-Np, 4), 2-Np (5), quinolinyl (Quin, 6), 4-methylcoumarinyl (Coum, 7) and 1-adamantyl (8). The complexes were isolated as yellow to red solids in high yields using mild synthetic conditions. The single-crystal X-ray structures revealed that the colour of the deep-red solids is associated with the formation of a particular type of short (3.2-3.3 Å) intermolecular pyrazine⋅⋅⋅pyrazine π-interactions. In some cases, yellow and red crystal polymorphs were formed; only the latter were emissive at room temperature. Combined NMR and UV/Vis techniques showed that the supramolecular π-stacking interactions persist in solution and give rise to intense deep-red photoluminescence. Monomeric molecules show vibronically structured green emissions at low temperature, assigned to ligand-based 3 IL(C^N^C) triplet emissions. By contrast, the unstructured red emissions correlate mainly with a 3 LLCT(SR→{(C^Npz ^C)2 }) charge transfer transition from the thiolate ligand to the π⋅⋅⋅π dimerized pyrazine. Unusually, the π-interactions can be influenced by sample treatment in solution, such that the emissions can switch reversibly from red to green. To our knowledge this is the first report of aggregation-enhanced emission in gold(III) chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light-induced catalytic and cytotoxic properties of phosphorescent transition metal compounds with a d8 electronic configuration.

Transition metal compounds are well documented to have diverse applications such as in catalysis, light-emitting materials and therapeutics. In the areas of photocatalysis and photodynamic therapy, metal compounds of heavy transition metals are highly sought after because they can give rise to triplet excited states upon photoexcitation. The long lifetimes (more than 1 μs) of the triplet states...

متن کامل

Switching and tuning organic solid-state luminescence via a supramolecular approach.

Unusual intermolecular interactions of organic luminescent acid, 2-cyano-3(4-(diphenylamino)phenyl)acrylic acid (CDPA), with amines lead to the formation of supramolecular luminescence systems with switchable and tunable solid-state luminescence.

متن کامل

Luminescent self-assembly formation on a gold surface observed by reversible ‘off–on’ switching of Eu(III) emissionw

The design and synthesis of functional material are of great current interest in chemistry and nanoscience. In particular, systems based on the use of self-assembly formation have been developed and studied in solution as mimics of macroscopic devices such as molecular switches and sensors, integrated logic gates, and as artificial molecular machines. Immobilising such systems onto various soli...

متن کامل

Controlling intermolecular aurophilicity in emissive dinuclear Au(I) materials and their luminescent response to ammonia vapour.

The concept that hydrogen bonding cations can reduce the coulombic repulsion inherent to anionic gold species and thereby trigger aurophilicity is realized with three new photoluminescent compounds of the form [Q]2[Au2(i-mnt)2] (i-mnt = (CN)2C[double bond, length as m-dash]CS2(2-), Q = 3,5-dimethylpyrazolium, piperidinium). These compounds illustrate unprecedented supramolecular aurophilicity b...

متن کامل

Synthesis and luminescence modulation of pyrazine-based gold(III) pincer complexes.

The first examples of pyrazine-based gold(III) pincer complexes are reported; their intense photoemissions can be modified by protonation, N-alkylation or metal ions, without the need for altering the ligand framework. Emissions shift from red (77 K) to blue (298 K) due to thermally activated delayed fluorescence (TADF).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2017